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Abstract

Accented speech recognition and accent classification are rela-
tively under-explored research areas in speech technology. Re-
cently, deep learning-based methods and Transformer-based
pretrained models have achieved superb performances in both
areas. However, most accent classification tasks focused on
classifying different kinds of English accents and little attention
was paid to geographically-proximate accent classification, es-
pecially under a low-resource setting where forensic speech sci-
ence tasks usually encounter. In this paper, we explored three
main accent modelling methods combined with two different
classifiers based on 105 speaker recordings retrieved from five
urban varieties in Northern England. Although speech repre-
sentations generated from pretrained models generally have bet-
ter performances in downstream classification, traditional meth-
ods like Mel Frequency Cepstral Coefficients (MFCCs) and for-
mant measurements are equipped with specific strengths. These
results suggest that in forensic phonetics scenario where data
are relatively scarce, a simple modelling method and classi-
fier could be competitive with state-of-the-art pretrained speech
models as feature extractors, which could enhance a sooner es-
timation for the accent information in practices. Besides, our
findings also cross-validated a new methodology in quantifying
sociophonetic changes.
Index Terms: Geographically-proximate accent classification,
Accent modelling, Forensic phonetics, Sociophonetics

1. Introduction
Accents and dialects, with minor differences, are ubiquitous in
human languages (we will use both terms interchangeably in
this paper). Generally speaking, accent related research could
be divided into accented speech recognition and accent classifi-
cation.

Accented speech recognition usually refers to transcribing
accented speech data into texts. [1] firstly adopted context in-
dependent Hidden Markov Model (HMM) units to classify five
European accents by both accent group and gender group. In
the machine learning era, various levels, ranging from acous-
tic, phonetic, phonotactic to prosodic features were used in
machine learning models and managed to achieve lower Word
Error Rate (WER). For example, [2] tested different levels of
features on English, Arabic, and Portuguese comprehensively.
The accent classification systems before ASR systems enhanced
the performance by a relatively large degree. After [3] and
[4], the transformer architecture and the pretraining became
the new paradigm for natural language processing (NLP) tasks
[5, 6] and the trend soon surged in speech technology research
[7, 8, 9, 10, 11]. Recently, [12] introduced an unsupervised style
embedding method and witnessed 14.8% WER reduction based
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Figure 1: The Overall Binary Classification Strategy

on transformer architectures on AESRC2020 dataset [13]. Gen-
erally, accented speech recognition usually models the accent as
an exterior variable and merges it into downstream neural net-
works afterwards.

Accent classification, which means classifying speech data
into their corresponding accent categories, is relatively under-
explored due to its indirect downstream applications. [14]
explored foreign accented English classification with Mel-
cepstrum coefficients, energy and first order differences. [15]
tried to classify Arabic and Indian accents via Support Vec-
tor Machines (SVMs) based on MFCCs, which showed 75% to
97.5% accuracy with high precision and recall. [16] compared
Gaussian Mixture Models (GMM), GMM-Universal Back-
ground Model (GMM-UBM), and i-vector in classifying Dra-
vidian accented English. [17] used convolutional neural net-
works (CNNs) and Gated Recurrent Units (GRUs) to classify
Ao’s accents with approximately 6 hours of speech.

Forensic phonetics is a rapidly growing research field
whose main research tasks consist of speaker identification and
disputed utterance analysis [18]. Accent classification is one of
the most important factors in speaker identification. [19] firstly
proposed Y-ACCDIST modelling and used SVMs as the clas-
sifier to enhance accent classification in forensic applications.
However, little attention was paid to forensic applications along
with the development of speech technology.

Generally, speech technology in forensic applications en-
countered two main problems. Firstly, the scarcity of data. It
is conceivable that in forensic scenarios, only short and frag-
mented raw speech data are available. Consequently, deep



learning based methods are hard to be fully utilized. For ex-
ample, [20] used 178 hours of raw speech data to improve bidi-
rectional long short-term memory (BiLSTM) based recurrent
neural networks’ speech recognition performance. [19] could
only utilize about 3 hours of data to classify geographically-
proximate accents. Besides, almost all accent classification re-
search focused on foreign accented English, such as Singapore
accented English or Chinese accented English. Forensic appli-
cations tend to focus more on geographically-proximate accents
on the contrary.

Sociophonetics explores language variations at a social
scale [21]. The methods to quantify and compute language vari-
ations are relatively new and accent classification is a window to
discover machine learning models’ potential in sociophonetics
research.

In this paper, we mainly combined three kinds of ac-
cent modelling methods, formant measurements, MFCCs, and
wav2vec2.0 with two kinds of simple classifiers, logistic regres-
sion and multiple layer perceptrons (MLPs) to explore their ac-
cent classification performances at five urban varieties in North-
ern England. To summarize, our main contributions are:

1) To the best of our knowledge, we firstly utilized pre-
trained speech models as feature extractors in forensic-
like applications.

2) We compared three accent modelling methods in accent
classification and verified the competitiveness of tradi-
tional methods in low-resource settings.

3) Our results suggested the feasibility of traditional clas-
sification systems as a quick screening tool in forensic
practices. Besides, our results also offered a potential
methodology in detecting sociophonetic variations.

2. Data and Methods
2.1. Data

The data in this paper are from [22], which were extracted from
the EDAC corpus in [23]. In total, 105 speakers were selected
out from the five urban varieties, Leeds (N = 27), Liverpool (N
= 17), Manchester (N = 23), Newcastle upon Tyne (N = 19),
and Sheffield (N = 19), among which 59% are female and 67%
had a higher education degree. The reading essay, “The Boy
Who Cried Wolf”, is a 216-word text including all English vow-
els. In total, 105 speakers have about 141 minutes’ raw speech
data. There are several advantages using this dataset. Its five
adjacent urban varieties correspond well to forensic needs to
classify fine-grained samples. Besides, the data were recorded
via mobile phone applications which also aligns with forensic
scenario characteristics.

2.2. Experimental Setup

The overall binary classification strategy is shown in Figure 1.
Raw speech data are modelled by different methods and gener-
ated flattening embeddings. Accent embeddings are then pro-
cessed by different classifiers to get the final results. We will
discuss the experimental details in the following parts.

2.2.1. Feature Extraction and Segmentation

In this paper, we used three methods based on phonetic tran-
scription, signal processing, and pretraining respectively, which
basically covered the history of speech technology research.

Formant Measurements Formant modelling is a tra-
ditional phonetic method which only considers vowels.

Its real-world applications has been verified extensively
[24][25][26][27]. In this paper, firstly, speech data were forced-
aligned via an HTK-based forced aligner [28]. Then the
first two formants of each vowel were measured automati-
cally, through phonetic analysis software, Praat [29]. Differ-
ent strategies were adopted for monophthongs and diphthongs.
For monophthongs, the formants were extracted at midpoints.
For diphthongs, onglides and offglides were defined as 20%
and 80% of the vowel duration. Formants were extracted at
onglides and offglides. After automatic measurement and hand-
correction, formants’ data were z-scored to reduce the effects
on models’ coefficients because the second formant (F2 on-
wards) is bigger than the first formant (F1 onwards). In total,
each speaker will be modelled by 60 features extracted from the
dataset.

MFCCs MFCCs are one of the mostly used cepstral coef-
ficients in signal processing, which are obtained as the inverse
discrete cosine transform of the log energy in mel frequency
bands. The concrete formula is shown below:
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where t represents the number of frames and c represents the
dimension of MFCCs.

In this paper, MFCCs were extracted in 64 dimensions.
Considering the high-dimension after modelling, we attempted
to cut MFCCs into fixed number of frames, for example, 15,
100, and 200. On the one hand, data were augmented via di-
mensional reduction, from which we got about 45000 samples;
on the other hand, this also helped to check the critical number
of frames in the specific accent classification task.

Wav2vec2.0 Wav2vec2.0 [30] is a representative self-
supervised model that outperformed semi-supervised methods
in speech recognition on the Librispeech dataset [31]. It was
trained in a similar fashion to BERT, masking a fixed proportion
of time steps in the latent encoder space. Besides, its perfor-
mances in speaker verification and language identification are
also remarkable [32]. In this paper, we used wav2vec-base as
our feature extractor to retrieve final layer output as speech rep-
resentations for downstream classification tasks. Seemingly, we
also did dimensional reduction via cutting representations into
specific length of frames.

2.2.2. Classifiers

In this paper, we mainly used two classifiers, logistic regression
and MLPs due to several reasons. Firstly, logistic regression
has been tested to be one of the most robust linear classification
methods. And MLPs is the simplest classifier which introduced
non-linearity activation functions. Besides, both classifiers are
relatively simple and can be trained in relatively quick speed,
which aligns well with real-world forensic applications. At last,
the results we tested on RNNs led to two intractable problems,
easily overfitting and extremely slow training speed.

2.2.3. Classification Strategy and Evaluation Metrics

[22] and [17] both trained classifiers using one-versus-all clas-
sification strategy, which we are following along in this paper.
Take the training of Liverpool as an example, 10% of the data
will be selected out as the test objects. A training set with an
equal number of Liverpool speakers and other cities’ speakers
will be generated for each sampling. Here, other cities’ dataset



Table 1: Results of Formant Measurements Modelling

Model Logistic Regression MLPs

City
Metric P R F1 P R F1

Leeds 68.54 69.37 68.95 69.23 69.11 69.17
Liverpool 89.56 91.88 90.70 89.33 89.29 89.31

Manchester 68.77 72.30 70.49 70.50 70.70 70.60
Newcastle 79.20 76.53 77.84 76.21 77.00 76.60
Sheffield 59.35 59.42 59.38 62.16 61.84 62.00

is under-sampled to create a relatively balanced training set. Fi-
nally, a classifier will be trained on this new dataset, and we
tested the accuracy of the test objects. This training procedure
was repeated one hundred times for each sampling with differ-
ently sampled training sets to guarantee our results’ robustness.

We evaluated our models’ performance based on three met-
rics, precision (P), recall (R) and F1 score (F1).

3. Results
Due to the limitation of space, the binary classification results
under formant modelling, MFCCs + 200-frame segmentation,
and wav2vec2.0 + 100-frame segmentation are listed in Table 1
to Table 3 respectively. In Table 4, we listed several experi-
mental setups’ average F1 scores which have relatively good
performances.

The speech representations generated by wav2vec2.0-base,
combined with 100-frame segmentation and logistic regression,
performed best at 82.03 F1 score, followed by MFCCs and 200-
frame segmentation at 80.88 and 81.02 F1 scores respectively.
The traditional formant method have relatively mediocre per-
formance at 73.47 and 73.54, slightly better than MFCCs and
100-frame segmentation settings. Several different numbers
of the frames were tested in the experiments, 100-frame and
200-frame segmentation have best overall performance. The
F1 scores’ performance along with frame segmentation and the
interaction between classifiers and frames will be further dis-
cussed in the next section.

The comparison across three different modelling methods
showed that wav2vec2.0 performed best averagely, at 77.56
F1 score, followed by MFCCs’ 75.05 and formant modelling’s
73.50. Besides, wav2vec2.0 has a smaller standard devia-
tion compared to MFCCs, which supported pretrained models’
strong capacity in speech representations. However, given the
fact that formant modelling did not undergo any ”augmenta-
tion”, its results are quite impressive as a whole.

Jumping into different cities’ classification accuracy, on
the one hand, there is a rather clear trend that MFCCs and
wav2vec2.0 have more averagely distributed classification re-
sults than pure formant measurements. For example, Sheffield
has the lowest classification accuracy in formant modelling.
Among other setups, the highest accuracy for identifying
Sheffield accent improved from 62.00 to 84.10, and even higher
than Newcastle accent which has high accuracy previously. On
the other hand, formant modelling could identify Liverpool ac-
cents incredibly well, whose accuracy is never outperformed in
following experiments. These results reflect different foci in
accent modelling methods.

4. Discussion
In this section, we will discuss accent modelling methods, ma-
chine learning classifiers, frame segmentation, and the methods’

Table 2: Results of MFCCs Modelling + 200 Frames
Segmentation

Model Logistic Regression MLPs

City
Metric P R F1 P R F1

Leeds 69.04 68.09 68.56 80.40 79.37 79.88
Liverpool 72.39 75.39 73.86 83.50 85.50 84.49

Manchester 67.38 63.94 65.61 80.26 83.14 81.67
Newcastle 69.10 71.51 70.28 78.82 79.27 79.04
Sheffield 71.34 74.33 72.80 77.45 82.72 80.00

Table 3: Results of wav2vec2.0 Modelling + 100 Frames
Segmentation

Model Logistic Regression MLPs

City
Metric P R F1 P R F1

Leeds 80.45 82.69 81.55 71.75 71.04 71.39
Liverpool 86.11 86.87 86.49 76.66 85.37 80.78

Manchester 76.61 78.62 77.60 68.53 72.48 70.45
Newcastle 80.20 80.58 80.39 70.52 71.34 70.93
Sheffield 82.99 85.25 84.10 77.21 79.58 78.38

potential insights in language variation and sociophonetics.

4.1. Accent Modelling

The three accent modelling methods we mainly explore showed
different performances in the order of wav2vec2.0, MFCCs, and
formant measurements. Recalling the modelling methodology,
we only measured vowels’ F1s and F2s as our feature engi-
neering output, without any consonants’ information. On the
contrary, wav2vec2.0 and MFCCs took the whole speech data
into consideration and better results could be expected. The
differences in F1 scores are mainly at cities with high accu-
racy and low accuracy. For example, MFCCs managed to im-
prove Sheffield’s F1 score by over 13 points. However, at the
same time, the previous highest F1 score in recognizing Liver-
pool dropped at about 17 points. Generally, the results using
wav2vec2.0 followed the similar trends to MFCCs.

[22] stated the general trend of dialect leveling at Northern
England and the fact that Liverpool and Newcastle are the most
distinct two accents compared to other accents. And random
forests’ classification results verified this finding well. In this
paper, we partially verified the prior knowledge from MFCCs
and wav2vec2.0’s perspective. Among all experimental set-
tings, models could classify Liverpool accents best. However,
the accuracy in identifying Newcastle accents could not appar-
ently outperform others, which indicates that Newcastle’s con-
sonantal information might hide it among other accents. Be-
sides, formant modelling’s extraordinary performance in identi-
fying Liverpool indicated that formant modelling is quite useful
in filtering accent outliers.

To sum up, our results successfully find out a general func-
tion for three accent modelling methods and suggest an ele-
mentary workflow in forensic accent classification. Firstly, we
should delimit several candidate accents awaiting for classifi-
cation. Then, we should consider using formant modelling to
select out the most distinct accent according to requests. After-
wards, more comprehensive accents modelling methods should
be adopted and classify the accents as a quick screening tool.
At last, we should go into details, analyze its acoustic features
accordingly to finalize our judgments.



Table 4: Different Experimental Setups’ Average F1 Score
under Binary Classification

Experimental Setup Average F1 Score
Formant + LR 73.47

Formant + MLPs 73.54
MFCCs + 100 Frames + LR 68.07
MFCCs + 200 Frames + LR 80.88

MFCCs + 100 Frames + MLPs 70.22
MFCCs + 200 Frames + MLPs 81.02

wav2vec2.0 + 100 Frames + LR 82.03
wav2vec2.0 + 200 Frames + LR 76.58

wav2vec2.0 + 100 Frames + MLPs 74.37
wav2vec2.0 + 200 Frames + MLPs 77.26

4.2. Classifiers

Generally, MLPs have better performance than its counterparts,
which aligns with our intuition. The only exception is the
wav2vec2.0 and 100-frame segmentation setting with the high-
est overall performance.

As the dimensions increase, the logistic regression mod-
els’ generalization ability decrease due to its linear quality. We
tested logistic regression using both MFCCs and wav2vec2.0
without doing any segmentation, which leads to a over 620000-
dimension vector. The average F1 scores are dropping to less
than 40. Although logistic regression is quite robust in most
cases, when it comes to high-dimensional computing, MLPs
are a better choice with relatively stable generalization ability.
The turning point between logistic regression and MLPs is ba-
sically a rule of thumb. In our settings, we can basically say
100-frame fits better to logistic regression and 200-frame fits
better to MLPs. As single dimension is increasing, more ad-
vanced classifiers should be adopted.

In this paper, we only classified accents via flattening the
feature vectors into linear arrays rather than high-dimensional
arrays. However, sequential information and interaction is cru-
cial in speech information. Future work should consider us-
ing CNNs and RNNs as classifiers with advanced data augmen-
tation techniques. Besides, a comprehensive database includ-
ing more geographically-proximate accents will definitely ben-
efit training neural networks and fine-tuning pretrained speech
models.

4.3. Frame Segmentation

In the results part, we only showed 100-frame and 200-frame
segmentation because of their relatively high performance. Fig-
ure 2 witnessed the average F1 score changes along with differ-
ent lengths’ frame segmentation. Averagely, 200 frames, which
approximately equals to 10 phonemes, could classify the ac-
cents best in simple classifiers’ settings.

Segmenting raw speech data into fixed length of frames is a
disguised way of data augmentation. Compared with formant
modelling which can not make full use of data and have to
encounter multicollinearity problem, segmenting according to
frames both improved accuracy and generalization ability. In
practices, we should consider using it as a regular way to en-
hance classification models.

4.4. Sociophonetic Changes

Quantifying sociophonetic changes automatically and discov-
ering potential changes are rarely explored topics in computa-

Figure 2: Average F1 Score Changes along with Different
Frames of Segmentation

tional sociolinguistics. The core difficulty lies at the trade-off
between accuracy and machine learning models’ interpretabil-
ity. [22] firstly tried to quantify sociophonetic changes via ran-
dom forests. Although they argued that machine learners and
human learners were following different patterns in classifica-
tion, it was acceptable to use machine learning models as an ex-
ploratory tool in discovering changes. However, when it comes
to logistic regression, the strong multicollinearity between for-
mant variables made the interpretability highly fluctuant. We
tried to extract the top ten most important variables from lo-
gistic regression models and compared with those from random
forests. There is just one common variable. Although this vari-
able was not seen in previous literature, further investigation is
still needed to verify its real-world authenticity.

[22] stated another hypothesis that the classification accu-
racy could reflect the degree of dialect leveling. For example,
the results in Table 1 implied that Liverpool and Newcastle ac-
cents are distinct ones and the rest three accents are undergo-
ing dialect leveling. Our accent modelling methods which take
overall information improved the Sheffield accent by a lot, im-
plying that besides vowels’ formants, Sheffield accents’ overall
information made it stand out among five accents. Previously,
most variationist sociolinguistics research focused on vowels’
features due to its relative scarcity and easy-to-measure acous-
tic features. MFCCs and pretrained models should make a com-
prehensive detection possible. In this paper, our experiments
successfully verified the robustness of speech representations
extracted from pretrained speech models, which corresponds to
[33]. And our results further verified the feasibility of frame
segmentation. This suggests that sociophonetic research should
consider diving into fine-grained segments and pretrained mod-
els. Furthermore, we could compare across speakers in specific
dimensions and even locate changes more accurately.

5. Conclusions and Future Work
In this paper, we explored geographically-proximate accent
classification tasks, firstly utilized pretrained speech models in
forensic-like settings and verified their robustness, compared
across different accent modelling methods and classifiers, and
proposed a general forensic accent classification workflow. We
hope our work could encourage the utilization of advanced
speech technology in forensic phonetics research.

As for the future work, previous computational linguistics
research [34] showed BERT encoded different levels of features
at various layers. [33] initially showed that Transformer-based
models could capture intonational and durational differences
better but further investigation towards layers is still needed.
Besides, pretrained models’ potentials in fine-tuning have not
been fully utilized. We are looking forward to seeing the en-
hancement of accent classification and speech representations
after fine-tuning on a medium amount of speech data.
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